植物纳米生物学实验室



论文发表:


  1. Liu J, Gu J, Hu J, et al. Use of Mn3O4 nanozyme to improve cotton salt tolerance[J]. Plant biotechnology journal, 2023.(IF, 13.8; IF5year, 13.2)

  2. Gu J, Lu X, Li G, et al. Beyond carbon dots: Intrinsic reducibility in Ti3C2 MXene quantum dots induces ultrasensitive fluorescence detection and scavenging of Mn (VII)[J]. Chemical Engineering Journal, 2023, 467: 143445.(IF, 15.1; IF5year, 14.3)

  3. Sun G, Dong Z, Li G, et al. Mn3O4 Nanoparticles Alleviate ROS‐Inhibited Root Apex Mitosis Activities to Improve Maize Drought Tolerance[J]. Advanced Biology, 2023: 2200317.(IF, 3.7; IF5year, 3.7)

  4. Fu C, Khan M N, Yan J, et al. Mechanisms of nanomaterials for improving plant salt tolerance[J]. Crop and Environment, 2023.

  5. Khan M N, Fu C, Li J, et al. Plant nanobionics: nanotechnology for augmentation of photosynthesis efficiency[M]//Nano-Enabled Sustainable and Precision Agriculture. Academic Press, 2023: 119-142.(IF, N/A; IF5year, N/A)

  6. Khan M N, Fu C, Li J, et al. Seed nanopriming: How do nanomaterials improve seed tolerance to salinity and drought?[J]. Chemosphere, 2022: 136911.(IF, 8.8; IF5year, 8.3)

  7. Wu HH*, Li ZH*.(2023) The known mechanisms behind nanoceria improved plant salt tolerance.Advanced Mater Letters. (IF, N/A; IF5year, N/A)

  8. Linlin Chen, Yuquan Peng, Lan Zhu, Yuan Huang, Zhilong Bie, Honghong Wu*.(2022) CeO2 nanoparticles improved cucumber salt tolerance is associated with its induced early stimulation on antioxidant system. Chemosphere. 2022, 134474, ISSN 0045-6535. (IF, 8.943; IF5year, 8.52)

  9. Honghong Wu, Zhaohu Li. (2022) Nano-enabled agriculture: How do nanoparticles cross barriers in plants?. Plant Communications. 2022, 100346, ISSN 2590-3462. (IF, 8.625; IF5year, 8.625)

  10. Li Z, Zhu L, Zhao F, Li J, Zhang X, Kong X, Wu H*, Zhang Z. (2022) Plant Salinity Stress Response and Nano-Enabled Plant Salt Tolerance. Front Plant Sci. 2022 Mar 22;13:843994. (IF, 6.627; IF5year, 7.255)

  11. Zhang Xianchen, Wang Ningning, Hou Mengmeng, Wu Honghong, Jiang Hong, Zhou Ziwen, Chang Na, Wang Qianqian, Wan Xiaochun, Jiang Jiayue, Shen Zhougao, Li Yeyun (2022) Contribution of K solubilising bacteria (Burkholderia sp.) promotes tea plant growth (Camellia sinesis) and leaf polyphenols content by improving soil available K level. Functional Plant Biology. 49, 283-294. (IF, 2.812; IF5year, 3.291)

  12. Khan, M. N., Li, Y., Fu, C., Hu, J., Chen, L., Yan, J., Khan, Z., Wu, H., Li, Z., CeO2 Nanoparticles Seed Priming Increases Salicylic Acid Level and ROS Scavenging Ability to Improve Rapeseed Salt Tolerance. Global Challenges. 2022, 6, 2200025. (IF, 5.135; IF5year, 7.289)

  13. Zhu L, Chen L, Gu J, Ma H, Wu H*.(2022) Carbon-Based Nanomaterials for Sustainable Agriculture: Their Application as Light Converters, Nanosensors, and Delivery Tools. Plants. 11(4):511.(IF, 4.658; IF5year, 4.827)

  14. Yanhui Li, Jiahao Liu, Chengcheng Fu, Mohammad Nauman Khan, Jin Hu, Fameng Zhao, Honghong Wu*, Zhaohu Li. (2022) CeO2 nanoparticles modulate Cu-Zn superoxide dismutase and lipoxygenase-IV isozyme activities to alleviate membrane oxidative damage to improve rapeseed salt tolerance. Environmental Science: Nano 9:1116-1132.(IF,8.131; IF5year, 8.3) 

  15. Mohammad Nauman Khan, Yanhui Li, Zaid Khan, Linlin Chen, Jiahao Liu, Jin Hu, Honghong Wu*Zhaohu Li*. (2021) Nanoceria seed priming enhanced salttolerance in rapeseed through modulating ROShomeostasis and α-amylase activities. Journal of Nanobiotechnology (IF, 10.435; IF5year, 9.151)19:276.

  16. Liu J, Li G, Chen L, Gu J, Yang G, Wu H*, Li Z.  (2021) Cerium oxide nanoparticles improve cotton salt tolerance by enabling better ability to maintain cytosolic k+/Na+ ratio. Journal of Nanobiotechnology (IF, 10.435; IF5year, 9.151) 19:153.

  17. Honghong Wu *, Zhaohu Li*  . (2021)Recent advances in nano-enabled agriculture for improving plant performance. Crop Journal(IF, 4.407; IF5year, 5.687).

  18. Liu J, Fu C, Li G, Khan MN, Wu H*. (2021) ROS homeostasis and plant salt tolerance: Plant nanobiotechnology updates. Sustainability 13: 3552. (IF, 3.251; IF5year, 3.473).

  19. Liu J, Hu J, Li Y, Li G, Wu H*. (2021) Chapter 10: Calcium channels and transporters in plants under salinity stress. Calcium Transport Elements in Plants, edited by Dr. Santosh Upadhyay, published by Elsevier (Paperback ISBN: 9780128217924).

  20. Zhao L*,Lu L, Wang A, Zhang H, Huang M, Wu H*, Xing B, Wang Z, Ji R. (2020) Nano-biotechnology in agriculture: Use of nanomaterials to promote plant growth and stress tolerance. Journal of Agricultural and Food Chemistry 68: 1935-1947. (IF, 5.279; IF5year, 5.269;). 

    本文入选ESI高被引论文。

  21. Santana I,Wu H,Hu P, Giraldo JP*. (2020) Targeted delivery of nanomaterials with chemical cargoes in plants enabled by a biorecognition motif. Nature Communications 11: 2045 (IF, 14.919; IF5year, 15.805; )

  22. Wu H#, Nißler R#, Morris V, Herrmann N, Hu P, Jeon SJ, Kruss S, Giraldo JP. (2020) Monitoring plant health with near infrared fluorescent H2O2 nanosensors. Nano Letters 20: 2432-2442. (IF, 11.189; IF5year, 12.777;)

  23. Wu H*, Hill C, Stefano G, Bose J*. (2020) Editorial: New insights into salinity sensing, signaling and adaptation in plants. Frontiers in Plant Science 11: 604139. (IF, 5.753; IF5year, 6.612)

  24. Zhang X#,Wu H#,Chen J#,  Chen L, Wan X*.(2020). Chloride, citric acid, and amino acids are associated with K-mitigated drought stress in tea (Camellia sinensis* L.). Functional Plant Biology 47: 398–408. (IF, 3.101; IF5year, 3.248;)

  25. Zhang X#, Wu H#, Chen J#, Chen L, Chang N, Ge G,Wan XC*. (2020) Higher ROS scavenging ability and plasma membrane H+-ATPase activities are associated with better potassium retention in drought tolerant tea plants. Journal of Plant Nutrition and Soil Science 183: 406–415. (IF, 2.426; IF5year, 3.029)

  26. Hu P#, An J#, Faulkner M,Wu H, Li Z, Tian X, Giraldo JP*. (2020) Nanoparticle charge and size control foliar delivery efficiency to plant cells and organelles. ACS Nano 14: 7970–7986 (IF, 15.881; IF5year, 16.207;)

  27. An J, Hu P, Li F,Wu H, Yu Shen Y, Jason C. White JC, Tian X, Li Z*, Giraldo JP*. (2020) Molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles. Environmental Science: Nano 7: 2214–2228 (IF, 8.131; IF5year, 8.3;)

  28. Khan MN, Khan Z, Luo T, Liu J, Rizwan M, Fahad S, Zhang J, Xu Z, Wu H,Hu L*. (2020) Seed priming with gibberellic acid and melatonin in rapeseed: Consequences for improving yield and seed quality under drought and non-stress conditions. Industrial Crops and Products 156: 112850 (IF, 5.645; IF5year,5.749;)

  29. Wu H, Shabala L, Zhou M, Su N, Wu Q, Ul-Haq T, Zhu J, Mancuso S, Azzarello E, Shabala S*. (2019) Root vacuolar Na+ sequestration but not exclusion from uptake correlates with barley salt tolerance. Plant Journal 100: 55-67. (IF, 6.417, IF5year,7.627;).

     本文入选ESI高被引论文。

  30. Giraldo JP*, Wu H, Newkirk G, Kruss S. (2019) Nanobiotechnology approaches for engineering smart plant sensors. Nature Nanotechnology 14: 541-553. (IF, 39.213; IF5year,42.237; invited review;).

     本文入选ESI高被引论文。

  31. Wu H*, Li Z*. (2019) The importance of Cl− exclusion and vacuolar Cl− sequestration: revisiting the role of chloride transport in plant salt tolerance. Frontiers in Plant Science 10: 1418. (IF,5.753; IF5year, 6.612; ).

  32. Zhang X#, Wu H#, Chen L, Li Y, Wan XC*. (2019) Efficient iron plaque formation on tea (Camellia sinensis) roots contributes to acidic stress tolerance. Journal of Integrative Plant Biology 61: 155–167. (IF, 7.061; IF5year, 6.002;)

  33. Zhang X#, Wu H#, Chen L, Wang N, Wei C, Wan XC. (2019) Mesophyll cells’ ability to maintain potassium is correlated with drought tolerance in tea (Camellia sinensis*). Plant Physiology and Biochemistry 136: 196–203. (IF, 4.27; IF5year, 4.816;)

  34. Wu H, Shabala L, Shabala S, Giraldo JP*. (2018) Hydroxyl radical scavenging by cerium oxide nanoparticles improves Arabidopsis salinity tolerance by enhancing leaf mesophyll potassium retention. Environmental Science: Nano 5: 1567-1583. (IF, 8.131; IF5year, 8.3;).


       本文入选ESI高被引论文。本文也入选Environmental Science: Nano期刊2018年度最佳论文集。

  35. Li J#, Wu H#, Santana I, Fahlgren M, Giraldo JP. (2018) Standoff optical glucose sensing in photosynthetic organisms by a quantum dot fluorescent probe. ACS Applied Materials & Interfaces 10: 28279-28289. (IF, 9.229; IF5year,9.57;).

  36. Wu H, Shabala L, Azzarello E, Huang Y, Pandolfi C, Su N, Wu Q, Cai S, Bazihizina N, Wang Lu, Zhou M, Mancuso S, Chen Z, Shabala S*. (2018) Na+ extrusion from the cytosol and tissue-specific Na+ sequestration in roots confer differential salt stress tolerance between durum and bread wheat. Journal of Experimental Botany 69: 3987–4001. (IF,6.992; IF, 5year, 7.86;).

  37. Wu H#, Zhang X#, Giraldo JP, Shabala S*. (2018) It is not all about the sodium: revealing tissue specificity and signaling role of potassium in plant responses to salt stress. Plant and Soil 431: 1–17. (IF, 4.192; IF5year, 4.712; invited “Marschner” review, featured in cover page, citations, 79).

    本文入选ESI高被引论文。

  38. Wu H*. (2018) Plant salt tolerance and Na+ sensing and transport. The Crop Journal 6: 215–225. (IF, 4.407; IF5year,5.687; citations, 82).

    本文入选ESI高被引论文。

  39. Zhang X#, Wu H#, Chen L, Liu L, Wan X*. (2018) Maintenance of mesophyll potassium and regulation of plasma membrane H+-ATPase are associated with physiological responses of tea plants to drought and subsequent rehydration. The Crop Journal 6: 611–620. (IF, 4.407; IF5year, 5.687; citations, 24)

  40. Newkirk G#, Wu H#, Santana I, Giraldo JP*. (2018) Catalytic scavenging of plant reactive oxygen species in vivo by anionic cerium oxide nanoparticles. JOVE-Journal of Visualized Experiments 138: e58373. (IF, 1.355; IF5year,1.696;)

  41. Zhang X, Chen L, Wu H, Wan XC. (2018) Root plasma membrane H+-ATPase is involved in low pH-inhibited nitrogen accumulation in tea plants (Camellia sinensis L.). Plant Growth Regulation 86: 423-432. (IF, 3.412; IF5year, 3.691; citations, 6)

  42. Wu H, Tito N, Giraldo JP*. (2017) Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species. ACS Nano 11: 11283-11297. (IF,15.881; IF5year, 16.207; citations, 90).

  43. Wu H#, Wang X#, Zhou X#, Zhang Y, Huang M, He J, Shen WB*. (2017) Targeting the middle region of CP4-EPSPS protein for its traceability in highly processed soy-related products. Journal of Food Science and Technology-Mysore 54: 3142–3151. (IF, 2.701; IF5year,3.574; citations, 1)

  44. Wu H#, Santana I#, Dansie J, Giraldo JP*. (2017) In vivo delivery of nanoparticles into plant leaves. Current Protocols in Chemical Biology 9: 269-284. (web of science indexed; citescore, 1.71; citations, 14)

  45. Shabala L, Zhang J, Pottosin I, Bose J, Zhu M, Fuglsang AT, Velarde-Buendia A, Massart A, Hill CB, Roessner U, Bacic A, Wu H, Azzarello E, Pandolfi C, Zhou M, Poschenrieder C, Mancuso S, Shabala S*. (2016) Cell-type specific H+-ATPase activity enables root K+ retention and mediates acclimation to salinity. Plant Physiology 172: 2445-2458. (IF, 8.34; IF5year, 8.972;)

  46. Zhang XC, Gao HJ, Yang TY, Wu HH, Wang YM, Zhang ZZ, Wan XC. (2016) Al3+-promoted fluoride accumulation in tea plants (Camellia sinensis) was inhibited by an anion channel inhibitor DIDS. Journal of the Science of Food and Agriculture 96: 4224-4230. (IF, 2.614; IF5year, 2.945; citations, 15)

  47. Zhang XC, Gao HJ, Yang TY, Wu HH, Wang YM, Zhang ZZ, Wan XC. (2016) Anion channel inhibitor NPBB inhibited fluoride accumulation in tea plants (Camellia sinensis*) is related to the regulation of Ca2+, CaM and depolarization of plasma membrane potential. International Journal of Molecular Sciences 17: 57. (IF, 3.638; IF5year, 3.802; )

  48. Wu H, Shabala L, Liu X, Azzarello E, Pandolfi, C, Zhou M, Chen, ZH, Bose J, Mancuso S, Shabala S*. (2015) Linking salinity stress tolerance with tissue-specific Na+ sequestration in wheat roots. Frontiers in Plant Science 6: 71. (IF, 5.753; IF5year,6.612;).

  49. Wu H, Shabala L, Zhou M, Stefano G, Pandolfi, C, Mancuso S, Shabala S*. (2015) Developing and validating a high-throughput assay for salinity tissue tolerance in wheat and barley. Planta 242: 847–857. (IF, 4.116; IF5year, 4.316; citations, 19).

  50. Wu H, Zhu M, Shabala L, Zhou M, Shabala S*. (2015) K+ retention in leaf mesophyll, an overlooked component of salinity tolerance mechanism: a case study for barley. Journal of Integrative Plant Biology 57: 171–185. (IF, 7.061; IF5year,6.002; citations, 101).

  51. Wu H, Shabala L, Zhou M, Shabala S*. (2015) Chloroplast-generated ROS dominates NaCl-induced K+ efflux in wheat leaf mesophyll. Plant Signaling & Behavior 10: 5, e1013793. (IF, 2.247; IF5year,2.369;).

  52. Wu H, Shabala L, Zhou M, Shabala S*. (2015) MIFE technique-based screening for K+ retention in the leaf mesophyll as a tool for crop breeding for salinity stress tolerance. Bio-Protocol 5: 1–10. (ESCI indexed; citations, 2)

  53. Shabala S*, Wu H, Bose J. (2015) Salt stress sensing and early signalling events in plant roots: current knowledge and hypothesis. Plant Science 241: 109–119. (IF, 4.729; IF5year, 5.132;)

  54. Zhang XC, Gao HJ, Wu HH, Yang TY, Zhang ZZ, Mao JD, Wan XC*. (2015) Ca2+ and CaM are involved in Al3+ pretreatment-promoted fluoride accumulation in tea plants (Camellia sinesis L.) Plant Physiology and Biochemistry 98: 288–295. (IF, 4.27; IF5year, 4.816; citations, 27)

  55. Wu H, Shabala L, Zhou M, Shabala S*. (2014) Durum and bread wheat differ in their ability to retain potassium in leaf mesophyll: implications for salinity stress tolerance. Plant and Cell Physiology 55: 1749–1762. (IF, 4.927; IF5year, 5.516;).

  56. Wu H, Shabala L, Barry K, Zhou M, Shabala S*. (2013) Ability of leaf mesophyll to retain potassium correlates with salinity tolerance in wheat and barley. Physiologia Plantarum 149: 515–527. (IF, 4.5; IF5year, 4.576;).

  57. Wu H, Zhang Y, Zhu C, Xiao X, Zhou X, Xu S, Shen WB*, Huang M*. (2012) Presence of CP4-Epsps components in Roundup Ready soybean-derived food products. International Journal of Molecular Sciences 13: 1919–1932. (IF, 5.923; IF5year, 6.132;)

  58. Xiao X, Wu H, Zhou X, Xu S, He J, Shen WB*, Zhou G, Huang M*. (2012) The combination of quantitative PCR and Western blot detecting CP4-EPSPS component in Roundup Ready soy plant tissues and commercial soy-related food stuffs. Journal of Food Science 77: C603–C608. (IF, 3.167; IF5year, 3.376;)

  59. Cui T, Li L, Gao Z, Wu H, Xie Y, Shen WB*. (2012) Haem oxygenase-1 is involved in salicylic acid-induced alleviation of oxidative stress due to cadmium stress in Medicago sativa. Journal of Experimental Botany 64: 5521–5534. (IF, 6.992; IF5year,7.86;)

  60. Zhou XH, Zhu CQ, Wu HH, Shen WB, Zhou GH, Huang M*. (2012) Effects of the storage temperature and time on cp4-epsps gene and protein in genetically modified soybean. Journal of Nanjing Agricultural University 35: 131–136. (citations 2, in Chinese)

  61. Cui W, Fu G, Wu H, Shen WB*. (2011) Cadmium-induced heme oxygenase-1 gene expression is associated with the depletion of glutathione in the roots of Medicago sativa. Biometals 24: 93–103. (IF, 2.949; IF5year,2.978; citations, 54)

  62. Wu T, Xu S, Sun Y, Wu H, Shen WB*. (2010) Alleviation of exogenous carbon monoxide on iron-induced oxidative damage in detached leaves of Oryza sativa L. Plant Physiology Journal 46: 120–124. (citations 2, in Chinese)

  63. Chen X, Ding X, Xu S, Wang R, Xuan W, Cao Z, Chen J, Wu HH, Ye MB and Shen WB*. (2009) Endogenous hydrogen peroxide plays a positive role in the upregulation of heme oxygenase and acclimation to oxidative stress in wheat seedling leaves. Journal of Integrative Plant Biology 51: 951–960. (IF, 7.061; IF5year, 6.002;)


专利:


1. 吴洪洪、李召虎、李广静、徐雯颍、戚杰、马慧欣、陈琳琳。纳米氧化铈在促进植物侧根发生中的应用。

2. 吴洪洪、李召虎、邵健敏、马慧欣、胡金、吴晗、顾江江、曹菲菲。PEI-MXene 量子点在提高植物抗逆胁迫中的应用。

3. 吴洪洪、李召虎、李佳玥、邱萍、朱龙付、邵健敏。一种PEI-MXene QD 纳米颗粒及其在提高植物黄萎病抗性中的应用。

4. 吴洪洪、李召虎、刘家浩、马慧欣、李广静、孙桂兰、熊栋梁、王笑笑。一种绿光激发的碳量子点及其在提高植物光合作用中的应用。

5. 吴洪洪、李召虎、刘家浩、顾江江、胡金、吴晗、曹菲菲。一种锰元素叶面喷施肥及制备方法。

6. 吴洪洪、李召虎、刘家浩、顾江江、胡金、李广静、曹菲菲。一种纳米拟酶、制备方法及包含其的种子浸泡剂。

7. 胡立勇、吴洪洪、吉晓晨、罗冉。一种基于儿茶酚的种子包膜方法。

8. 吴浩、吴洪洪、刘家浩、李佳欢。锰基纳米酶作为铁死亡抑制剂及其在肝损伤中的应用。

9. Giraldo J.P., Wu H, Tito N. Nanoceria augmentation of plant photosynthesis under abiotic stress. U.S. patent No. US10798938B2 (citations, 1)

10. Giraldo JP, Hu P, Santana I, Newkirk G, Wu H. Compositions comprising ananoparticles, a molecular basket comprising cyclodextrin, and a chloroplast-targeting peptide and methods of use thereof. US11186845B1

11. 黄明, 沈文飚, 吴洪洪, 肖笑, 徐晟, 周兴虎, 何健, 周光宏. 与CP4-EPSPS蛋白发生特异性抗原抗体反应的多克隆抗体及其应用。

12. 沈文飚, 黄明, 吴洪洪, 肖笑,周兴虎, 徐晟, 谢彦杰, 何健, 周光宏. 检测转Cp4-epsps基因大豆及其深加工产品中转基因成份的方法及试剂盒。

13. 吴洪洪、李召虎、付程程、闫嘉森、赵法萌、罗可、李燕辉、顾江江、朱岚。一种含硒碳量子点及其在提高植物抗逆胁迫中的应用。

14. 吴洪洪、李召虎、付程程、闫嘉森、顾江江、陈玲玲、戚杰、姚雪、李家其。一种含硒元素的浸种剂及其在提高植物抗盐胁迫中的应用。

15. 吴洪洪、李召虎、李广静、刘家浩、马慧欣、李燕辉、罗可、顾江江。一种聚丙烯酸修饰的Mn3O4纳米颗粒在提高作物高温抗性中的应用。



课题:

  1. 作物新品种选育与高效栽培创新团队

  2. Mn3O4纳米拟酶提高棉花抗旱性的生理分子机制. (国家自然科学基金委国际合作重点项目)

  3. 作物干旱高低温灾害预警预测与防控技术研发及集成示范. (国家重点科技研发计划)

  4. 硒代碳量子点调控K+外排通道蛋白提高棉花耐盐的机理研究. (国家自然科学基金委面上项目)

  5. 氧化铈纳米颗粒调控钠钾稳态提高耐盐性的机理研究.(国家自然科学基金委青年基金)

  6. Mn3O4纳米颗粒调控K+外排通道蛋白提高棉花耐盐性的机理研究.(华中农业大学校自主科技创新基金优秀人才培育项目)

  7. 纳米生物学在作物抗逆及转基因中的应用与机理研究.(中央高校基本科研业务费项目(华中农业大学高层次人才引进项目))

  8. 叶肉细胞钾离子滞留能力在茶树抗旱机制中的作用初探.(安徽农业大学茶学生物学与资源利用国家重点实验室开放基金)